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where

Crr = T f cos cosm y dy (14)

d
Ap=21if m=0, A,=2 if r=0, and A,=A,=1
otherwise and finally letting the subscripts o,
e, ¢, and ¢ have the same significance as ap-
plied to both a,, and b, (but for the fact that
even summation includes r=n=0), we find
that the cutoff frequencies of various modes
may be deduced by solving the following
equations

TE2n+1,2m+1: det[bnr(gr)] =0 (15)
TEun+1,2m: det[barcey] = 0 (16)
TEoap, 041t det[bm(ot>] =0 17
TEzn,sz det[b,.,(,,,t>] = 0. (18)

Evidently (10) to (12) and (16) to (18) may be
used to study modes in single-ridge wave-
guides; (16) and (18) are, with some changes
in notation, due to Collins and Daly [5].

It can be shown that the cutoff frequencies
of all modes reduce to those of the rectangular
waveguide as the dimensions of the inner con-
ductor tend to zero. Thus, for example, for
TMa,. 1.2, modes we note that when 2d/b=1,
then for all s (including s =0) we have pi, = pom,
K.y=K,.=1 subject to n=r=m. Hence (10)
reduces to

s 1 s
[coth pu{)—a + tanh Pir (T — %)]

X const. = 0 (19)

which has a solution

eth""zo (20)
and hence
—WW’”“) ()
n=012 =1,2---. (1)

Equations (20) and (21) hold for TEzn 1.0m
modes as well subject to m=0,1,2, - -.

Similarly, when TMan,ony and TEsnemi
modes are considered, we find that the plane
s=0 represents an electric wall and hence, for
all values of 24/b, the determinant vanishes
when

tanh % =0 (22)

o)+ ()

With reference to the curves when s=0, for
the TEy mode \./a=1.6 and for the TMy,
mode \;/a=0.848.

Furthermore, TMs,.2n and TEs,, 2, modes
have two planes of symmetry s =0 and 2d/b=1
and hence (22) applies in conjunction with

e/ () + ()

Specifically, when s=0, for the TE; mode
N./a=1 and for the TMy mode A./a=0.625.

Finally, TEz.41,2m41 80d TMay 41,9, s modes
have no planes of symmetry. When s=0 and
2d/b=1 determinants (10) and (15) diverge;
however, in practice when 2d/b=1, b/a=0.8
and s=0.03, numerical computations reveal

and

(23)

@)

the presence of a root \./a=1.249 while for
the rectangular waveguide corresponding to
s=0, 2d/b=1, we find that \./a=1.249 as
well.

When d=0 and s =a, the coaxial structure
is transformed into two waveguides and the
equations cannot be expected to hold in gen-
eral.

However, a study of the field pattern sug-
gests that when s approaches a, in the limit
the ratio A\./a of a coaxial TE;; mode tends
to that of a TE,, mode in a rectangular wave-
guide, viz,, \/a=2; similarly, A,/a of the
coaxial TE;; mode tends to that of a TEy
mode in a rectangular waveguide of reduced
height (when b/a=0.8, 2d/b=0.6, replacing
b by 0.3b we find that \,/a=0.466) etc.
Numerical calculations confirm these con-
jectures.

The convergence with respect to m in both
(8) and (13) is quite rapid and both expressions
vary asymptotically as 0(m~3). Furthermore,
the cutoff frequencies are primarily deter-
mined by a single diagonal term of det{an]
or det[h,.] and a 3X3 determinant is likely
to be adequate for most purposes.

1t is of interest to note that the above pro-
cedure entails no approximations other than
those inherent in the assumption that the walls
are lossless. Normalized cutoff wavelength
ratios \./a obtained by Pyle [6] for the TE,,
mode (b/a=0.45) were compared with those
obtained by the evaluation of 2X2 and 3X3
determinants of (16) and truncating the sum-
mation with respect to m after 8 terms. Typi-
cal results are shown below.

2X2 3X3
d/b s/a Determinant Determinant Reference [6]
0.2 0.2 3.769 3.920 3.985
0.2 0.9 2.892 2.916 2.961
0.8 0.2 2.121 2.140 2.163
0.8 0.9 2.051 2.051 2.057

Some \./a characteristics of a rectangular co-
axial waveguide (such that 5/a=0.8,
2d/b=0.6) are presented in Fig. 1.

An examination of these curves shows
that as the frequency is increased and the
propagation of higher-order modes becomes
possible, the TE;, (TEy) mode appears fol-
lowed by the TE;; and TEz, modes (the TMy
mode precedes the TE;, mode for some com-
binations of 2d/b and s/a subject to the same
aspect ratio b/a=0.8); it also shows under
what conditions two modes have the same
cutoff frequency and hence velocity of propa-
gation.
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Numerical Solution of TEM-Line Prob-
lems Involving Inhomogeneous Media

Both empirical and analytical methods
have been used in the past to evaluate the
characteristic impedance of transmission lines
supporting the TEM mode of wave propaga-
tion, Most of the analytical methods are rather
tedious for practical use, employ approxima-
tions, or are restricted to simple configura-
tions.

Therefore, in recent years, numerical
methods for the solution of the Laplace
equation in two dimensions in finite difference
form using digital computers have been de-
veloped. From the Laplace equation, the po-
tential distribution over the cross section of
the transmission line is obtained, and inte-
grating the potential gradient along a path
enclosing the inner conductor yields the
capacitance per unit length. This capacitance
is used to determine the characteristic imped-
ance and phase velocity of the line. Green!
and Schneider? have investigated these pro-
cedures and used them to obtain interesting
and useful results. For further information,
these two papers or the numerous references
cited in them should be consulted. The error
involved in the assumption that a transmis-
sion line with inhomogeneous medium sup-
ports a pure TEM mode is a fraction of a
percent up to frequencies of several gigahertz
for configurations with similar dimensions to
those under investigation in this correspon-
dence.

With the use of integrated circuits on ce-
ramic substrates suspended between two
parallel ground planes, the knowledge of the
characteristic Impedance and phase velocity of
such transmission lines in inhomogeneous
media is necessary. The purpose of this
correspondence is to investigate these two
quantitites as a function of the various param-
eters defining the structure of the cross sec-
tion.

The configuration which is discussed in
this correspondence is shown in Fig. 1: two
parallel ground planes with a spacing g be-
tween them. Centered between these ground
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Fig. 1. Schematic cross section of TEM line.

planes is the ceramic substrate with the center
conductor., The thickness of the substrate
board is d, its dielectric constant . The
width of the center conductor is w, its thick-
ness is assumed to be zero (the actual value
is about 0.5 mil). The sidewall spacing is s.

The standard dimensions of the transmis-
sion line under investigation are: g=120 mils
and d=24 mils. The characteristic impedance
Z and the normalized phase velocity v/v, were
calculated as a function of w, ¢, and sidewall
to center conductor spacing s'. Small pertur-
bations of the ground plane spacing g, of the
vertical position of the dielectric board d and
of its thickness 4 are also discussed.

Figure 2 shows Z and v/v, versus strip
width w of the center conductor assuming a
value of 8.0 for ¢ (typical for glazed alumina
substrates) and sufficient sidewall spacing to
prevent them from influencing the results.
When w changes from 12 to 360 mils, Z
varies between about 114 and 22 ohms, v/,
from 0.63 to 0.85., For w=113 mils, Z is 50
ohms and v/v,==0.77. This corresponds to an
effective dielectric constant e;:=1.67, A 10
percent variation of w from the 50-ohm value
causes a change of 6 percent of Z and a mis-
match resulting in a VSWR of 1.06 (31 dB
return loss). Stark from Bell Telephone
Laboratories, Inc. obtained experimental re-
sults for Z for various values of w and for
v/ve for w=120 mils, The ground-plane spac-
ing of his configuration was g=125 mils. For
comparison, these data are plotted in Fig, 2.

Next, the effect of sidewall spacing was
investigated. Figure 3 shows Z and v/v, versus
§’, which is the distance between one sidewall
and the nearest edge of the inner conductor;
g is again 120 mils, w =120 mils, d=24 mils,
and e.= 8.0, The impedance and phase velocity
stay constant, i.e., independent of s’ down to
5" =180 mils. From there on Z and » decrease
rapidly with decreasing s . In the constant re-
gion, the transmission line can be treated like
a line with infinite sidewall spacing. All
remaining calculations were done with suffi-
ciently large s.

Figure 4 presents the dependence of Z
and v/, of the standard line (g =w = 120 mils,
d=24 mils) on the dielectric constant e,. ¢, is
varied between 1 and 25. Correspondingly, Z
varies from 63 ohms to about 41 ohms, v/v,
from 1 to 0.65. There is a larger variation of
Z and v in the region of small ¢, than for the
higher ¢, values. An e, of 6.5 gives a 50-ohm
line for the present choice of parameters,
v/ve is 0.80. A 10 percent change of ¢ from
6.5 causes only about 1.5 percent impedance
variation. The VSWR connected with this
mismatch is only 1.01, the return loss there-
fore is larger than 45 dB,

Exact ground-plane spacing, centering of
the dielectric board, and exact thickness of
the board are important factors for the pro-
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Fig. 2. Z and v/ve versus width w of the center con-
ductor for g =120 mils, d =24 mils, and ¢ =8. (Ex-
perimental results for g =125 mils.)
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Fig. 3. Z and v/ve versus sidewall spacing s’ with
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Fig. 4. Z and v/ve versus dielectric constant e, with
£ =120 mils, w =120 mils, and d =24 mils.

duction of these transmission lines. Therefore,
the dependence of Z and » on these param-
eters was also studied. The dependence of Z
on gis

0.38 @/mil for the line width w=72 mils,
0.31 ©/mil for the line width w =120 mils,
and
0.27 ©/mil for the line width w=192 mils.

The impedance ratios of these three lines are
like 1:0.76:0.56, the impedance versus g
dependences are like 1:0.81:0.71, i.e., the
impedances of low ohmic lines are somewhat
more g dependent than higher ohmic lines.

From this, the necessary ground-plane
spacing for a 50-ohm line turns out to be 125
mils with an e, of 8.0, w =120 mils, and d=24
mils.

The velocity change versus g is very small;
it is actually smaller than the accuracy of the
computed results.

Next, the vertical position of the dielectric
board was varied 24 mils to both sides of the
center position #=0. Again Z and »/v, were
computed for the three lines with w =72, 120,
and 192 mils strip widths as shown in Fig,. 5.

It was found that there is a position of
maximum Z which is about 6 mils below the
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Fig. 5. Z and v/ve versus vertical deviation 4 from
center position of dielectric board for lines with
w=72, 120, and 192 mils with g =120 mils, d =24
mils, and e =8.
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Fig. 6. Z and v/vo versus thickness of dielectric board
d for lines with w =72, 120, and 192 mils with g =120
mils and e.=8.

center line for all three of the lines, In this
position, small variations of the vertical posi-
tion do not affect the impedance. The velocity
variations over the 48-mil range of % are
appreciable:

from 0.685 to 0.768 for line width w =72 mils,

from 0.716 to 0.816 for line width w = 120 mils,
and

from 0.745 to 0,857 for line width w = 192 mils,

The reason for this variation is the change
in the distribution of electromagnetic energy
over the cross section: when the board moves
upwards, a larger percentage of epergy con-
centrates between the center conductor and
the upper ground plane, the dielectric between
them is air, the velocity goes up. When the
board moves down, more energy is concen-
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trated between center conductor and lower
ground plane, ie., in the dielectric board,
and the velocity goes down.

Finally, the thickness of the dielectric
board was changed, again for the three preced-
ing lines. The positions of the center conduc-
tor and of the upper edge of the board were
kept constant, and the thickness was varied
by changing the location of the lower edge
of the board. The results for d values of =18,
24, and 30 mils are shown in Fig. 6, The
impedance and phase velocity decrease as ex-
pected with increasing thickness.

The impedance slope of these curves indi-
cates a Z versus d dependence of

0.39 @/mil for the line width w =72 mils,
0.32 @/mil for the line width w=120 mils,
and
0.19 Q/mil for the line width w=192 mils.

As the impedance ratios of the three lines
are 1:0.76:0.56 and the Z versus 4 depen-
dences are 1:0.82:0.49, it follows that achange
in d is about equally critical for lower and
higher ohmic lines within the range of con-
sideration.

The fractional velocity variation is the
same as the fractional impedance variation.

The accuracy of these calculations for Z
is typically around 1 percent but not worse
than 2 percent, for v/v, typically around 0.5
percent but not worse than 1 percent.
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Realizations of a Duo-Pole Branch of
an Elliptic-Function Bandstop Filter

This correspondence illustrates six realiza-
tions of the TEM line (transformed) equiva-
lent of the LC network A of Fig. 1. Network
A is here taken to represent a shunt branch
of a low-pass elliptic-function ladder filter [1].
Richards’ transformation [2] converts a
lumped element low-pass filter to a transmis-
sion-line bandstop filter [3]-[6). Each filter
element, L or C, is then replaced by a short-
or open-circuited quarter-wave stub. Thus,
network A is transformed to network B, with
parameters as defined in Fig. 1. The six
stripline and reentrant slabline networks C-H
are equivalent to network B and are well
suited for microwave filters. The character-
istic impedances of the lines in networks C, D,
E, and H are given in Fig. 1, and the coupled-
line impedances of networks F and G are
given in Schiffman and Matthaei [5] and
Schiffman [7]. Although networks F and G
are shown as cascaded sections [5], [7] (not
duo-pole type), here they are shunt-connected
with the far terminals open circuited. In net-
works B-D, line Z, is short circuited and line
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Stripline and reentrant slabline realizations of a shunt duo-pole branch of an elliptic-function bandstop

filter. Here, A =1’ tan [(r/2)(wo —w1) /wo)] where w1 and w1’ are corresponding frequencies (usually taken as band-
edge frequencies) in the bandstop and low-pass frequency domains, and we is center of stopband.

Z, is open circuited at its far end, andlines

Z, and Z, are in series with each other at

their near ends. In networks E and H, Z, is
open circuited and in cascade with Z;’.
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Characteristic Impedance of Multifin
Transmission Lines

Several years ago, the author had occasion
to investigate the characteristic impedance
properties of a TEM transmission line of
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unusual cross section. Specifically, the cross
section consisted of a round outer conductor
with a center conductor composed of a
number of thin fins symmetrically positioned
about the axis of the line. Examples of this
general class of cross section are illustrated
in Fig. 1 for the cases of two, three, four,
and six fins. Solutions for the characteristic
impedances of this type of configuration were
obtained by an interesting series of conformal
transformations that mapped the multifin
line geometry into that of a symmetric strip
transmission line. Since the characteristic
impedance of the latter is well known, curves
can readily be generated for the multifin line
impedance.

The basic steps in the mapping process
are outlined in Fig. 2. First, geometries hav-
ing other than two fins are mapped into the
two-fin case by applying the transformation

2 = 2 1)

where 1 is the number of fins in the given
geometry (z plane), Since this transformation
maps 2/n of the multifin line space into the
entire space of the two-fin line, the effect
will be to establish the relations

2

Zy=—12Zs @)
n
when
Tn 7y 2/n
2= (= 3
7~ (&) ®

where Z,, ¥n, R, and Z,, r;, R; are the char-
acteristic impedance, fin radial dimension,
and shield radius of the n-fin and two-fin lines,
respectively. Note that the z and z’ planes are
normalized so that the shield lies on the unit
circle.



